INDIAN MARIT	IME UNIVERSITY				
(A Central Universit	y, Government of India)				
M. Tech. (Marine Eng	ineering & Management)				
End Semester Examination June/July 2019					
SEME	STER – II				
Cryogenic and LNG Vessels [PG13E1201]					
Date : 29.06.2019	Maximum Marks : 100				

Time : 3 hrs.	Pass Marks : 50

Answer any Five (05) Questions. Assume any Missing Data. All Questions carry equal marks (5 X 20 = 100 Marks)

Q. No. 1 :

(a) Draw the Schematic Representation of Simple Claude Process along with its T-S Diagram.

06

(b) Find the COP of a Philips Refrigerator with nitrogen as the working fluid operating between a maximum pressure of 10 atm. and a minimum pressure of 01 atm. using the thermodynamic data for the real gas. A temperature of 100K is to be maintained while rejecting heat to an ambient sink at 300K. Find the effect of regenerator effectiveness (€) on the COP of the Philips Refrigerator. For 100% effective regenerator, the data at various points on the T-s diagram are given below.

	Point	Temperature	Pressure	Specific Volume,	Specific Entropy
	No.	(K)	(atm)	V (cc/mol)	(J/g-K)
ſ	1	300	03	285.71	4.10
ſ	2	300	10	71.43	3.72
Ī	3	100	3.5	71.43	2.90
Ī	4	100	01	285.71	3.28

Q. No. 2 :

(a) Based on the Throttling Expansion for lowering temperature, show the Schematic Representation of Simple Linde Hampson Process and also the corresponding T-S diagram.

08

06

(b) What are the methods available for continuous production of cold or low temperature processes ? Write in brief the inherent differences of the above processes.

- (a) With a neat diagram depicting all the components of a General Heat Conduction Equations, derive the following well-known equations :
 - (i) Laplace Equation
 - (ii) Fourier Equation
 - (iii) Poisson's Equation
- (b) Mention the shapes in which the equation (iii) above is extremely useful.

Q. No. 4 :

- (a) With a neat diagram, describe briefly the following two boiling processes, namely,
 - (i) Pool Boiling, and (ii) Flow Boiling.

06

09

03

(b) Ammonium vapours at 34°C are condensed on a square array of 25 X 25 horizontal tubes. Outside diameter of tubes is 30 mm. and length of each tube is 1.6 m. The surface temperature of the tubes is maintained at 22°C. Assuming the following equation :

$$h_{av} = 0.725 \frac{[K^{3}\rho_{L}(\rho_{L}-\rho_{V})g\lambda]^{0.25}}{nD\mu(T_{g}-T_{w})}$$

Calculate the rate of condensation of ammonium vapours. Given, Density of ammonia vapour = 0.6894 kg/m^3 ; Density of liquid ammonia = 600 kg/m^3 ; Viscosity of ammonia = $0.21 \times 10^{-3} \text{ N-s/m}^2$; Thermal conductivity = 0.51 W/mK; and Latent heat of condensating vapour = 11.25 kJ/kg.

Q. No. 5 :

- (a) Describe the types of Thermal Insulation.
 (b) Mention the Desirable Properties of Insulating Materials.
 03
- (c) Write in brief the scope of Thermal Insulation for Cryogenic services.

06

06

Q. No. 6 :

- Discuss the most two important problems to be tackled in Heat Exchangers. (a)
- 04
- (b) With a neat diagram mentioning Temperature, and Flow of Hot and Cold Fluid, in Parallel Flow System, prove the Effectiveness of Heat Exchanger (\in) can be as follows :

$$\in = \frac{1 - exp\left[-NTU\left(1 + CR\right)\right]}{1 + CR}$$

Where UA / C_{min} = NTU and C_{min} / C_{max} = Capacity Rate Ratio (CR) of a heat exchanger.

08

O. No. 7 :

- (a) For LNG steam vessel, why LNG is burnt in boiler during passage? 04 08
- Explain Custody Transfer System (CTS) with block diagram. (b)

Q. No. 8 :

(a) Explain ESDS with Logic block diagram used for Gas carrier vessel operations. 06

(b) Show cargo tank dome arrangement of a Gas Carrier.